NOTE

Analysis of a draft genome sequence of *Kitasatospora cheerisanensis* KCTC 2395 producing bafilomycin antibiotics

Jae Yoon Hwang¹, Soo Hee Kim¹, Hye Ryeung Oh¹, Eunju Kwon², and Doo Hyun Nam^{1*}

¹College of Pharmacy, ²Institute for Drug Development, Yeungnam University, Gyongsan 712-749, Republic of Korea

(Received Jun 13, 2014 / Revised Jul 31, 2014 / Accepted Aug 20, 2014)

Kitasatospora cheerisanensis KCTC 2395, producing bafilomycin antibiotics belonging to plecomacrolide group, was isolated from a soil sample at Mt. Jiri, Korea. The draft genome sequence contains 8.04 Mb with 73.6% G+C content and 7,810 open reading frames. All the genes for aerial mycelium and spore formations were confirmed in this draft genome. In phylogenetic analysis of MurE proteins (UDP-N-acetylmuramyl-_L-alanyl-_D-glutamate:DAP ligase) in a conserved dcw (division of cell wall) locus, MurE proteins of Kitasatospora species were placed in a separate clade between MurEs of Streptomyces species incorporating LL-diaminopimelic acid (DAP) and MurEs of Saccharopolyspora erythraea as well as Mycobacterium tuberculosis ligating meso-DAP. From this finding, it was assumed that Kitasatospora MurEs exhibit the substrate specificity for both LL-DAP and meso-DAP. The bafilomycin biosynthetic gene cluster was located in the left subtelomeric region. In 71.3 kb-long gene cluster, 17 genes probably involved in the biosynthesis of bafilomycin derivatives were deduced, including 5 polyketide synthase (PKS) genes comprised of 12 PKS modules.

Keywords: draft genome, *Kitasatospora*, MurE, polyketide synthase, bafilomycin

Kitasatospora cheerisanensis KCTC 2395 (=YC75) was isolated from a soil sample from Cheeri-San (Mt. Jiri) in the process of screening biological control agents for the phytopathogenic fungus (Chung *et al.*, 1999). Later, the antifungal metabolites produced by this strain were confirmed as bafilomycin derivatives including bafilomycin C1-amide belonging to plecomacrolide group (Moon *et al.*, 2003). The genus *Kitasatospora* is a genus of Actinomycetales having different content of *meso*-diaminopimelic acid (DAP) and galactose in whole-cell lysate from the closely related *Streptomyces* (Omura *et al.*, 1982). The genome sequence of *K. setae* NBRC 14216 (KM-6054) was firstly reported among this genus group (Ichikawa *et al.*, 2010).

The genome sequence of *K. cheerisanensis* KCTC 2395 was determined by a combination of the Illumina GAIIX 100 bp paired-end library, Roche 454 Titaium 8-kb paired-end library and PacBio 10 kb library. The draft genome was assembled with CLC genomic workbench 6.5 and SMART Analysis 2.0. Resulted contigs were scaffolded using GS Assembler 2.6 (Roche Diagnostics). The final assembly provided total 5 scaffolds containing 178 contigs, and the assembled draft genome was deposited at DDBJ/EMBL/GenBank under the accession JNBY00000000 as a bioproject PRJNA209102 (Hwang *et al.*, 2014).

The draft genome of *K. cheerisanensis* consists of 8,035,179 bp with 73.6% G+C content. The comparative analysis of the genome draft showed a homology as high as 85.8% with the complete genome of *K. setae* NBRC 14216 (KM-6054) by the analysis of average nucleotide identity by BLASTn. The MUMmer sequence alignment (Delcher *et al.*, 2003) of whole genome from *K. cheerisanensis* and *K. setae* showed little differences without any significant inversion or deletion, even though there were few gaps in gene synteny (Fig. 1).

The found ORFs (open reading frames) were 7,810 CDSs (coding domain sequences) with 9 rRNA operons and 72 tRNA genes (Table 1). The annotation of each CDS was made by homology search against the COG (cluster of or-thologous groups of proteins) and SEED databases (Tatusov *et al.*, 1997, 2000; Disz *et al.*, 2010). The 885 genes were assumed to be involved in information storage and processing, and another 987 genes were identified to participate in cellular processes. The most abundant 1,748 genes encoded the proteins for cell metabolism, but the other 1,084 genes were poorly characterized ones (Table 2).

As in *Streptomyces* strains, all *bld* genes (*bldA*, *bldB*, *bldC*, *bldD*, *bldG*, *bldH*, *bldK*, *bldM*, *bldN*, and *amfC*) required for the formation of aerial mycelium (Claessen *et al.*, 2006; den Hengst *et al.*, 2010) were found in the draft genome (Table 3). It was already known that BldH (AdpA homolog) regulated by *bldA* is an important intermediate transcription regulator in Bld cascade (Chater and Chandra, 2006). Typically UUA codon which can be recognized by *bldA* tRNA was well conserved in *bldH* gene (KCH_28450). Further, all *whi* genes regulating sporulation (*whiA*, *whiB*, *whiD*, *whiE*, *whiG*, *whiH*, *whiI*, *sigF*, *sigN*, and *crgA*) were identified (den Hengst *et al.*, 2010).

^{*}For correspondence. E-mail: dhnam@ynu.ac.kr; Tel.: +82-53-810-2825; Fax: +82-53-810-4654

Fig. 1. Whole genome alignment of *K. cheerisanensis* KCTC 2395 and *K. setae* KM-6054 by MUMmer. The red dots are the sequences having the same direction, and blue dots mean the inverted sequences. The location of the bafilomycin biosynthetic gene cluster was marked as circle. This gene cluster in *K. cheerisanensis* is located at left subtelomeric region, but *K. setae* has it at right subtelomeric region.

Table 1. Comparison of genome data of K. cheerisanensis KCTC 2395 and other actinomycet	tes
---	-----

Strain	Genome type	Total length (bp)	(G+C) content (%)	No. of CDS	No. of rRNA operons	No. of tRNA genes	Reference
K. cheerisanensis KCTC 2395	Draft	8,035,179	73.5	7,810	9	72	This work
K. setae NBRC 14216	Complete	8,783,278	74.2	7,569	9	64	Ichikawa et al. (2010)
S. coelicolor A3(2)	Complete	8,667,507	72.1	7,825	6	63	Bentley et al. (2002)
S. avermitilis M-4605	Complete	9,025,608	70.7	7,574	6	68	Omura et al. (2001)
S. cattleya NRRL 8057	Complete	6,283,062	72.9	5,779	6	64	Barbe et al. (2011)
S. griseus IFO 13350	Complete	8,545,929	72.2	7,138	6	66	Ohnishi <i>et al.</i> (2008)
S. scabiei 87.22	Complete	10,148,695	71.5	8,746	6	75	Bignell et al. (2010)
S. erythraea NRRL 23338	Complete	8,212,805	71.1	7,197	4	50	Oliynyk et al. (2007)

Table 2. COG (cluster of orthologous groups of proteins) distribution of ORFs (open reading frames) found in a draft genome of K. cheerisanensis KCTC 2395

Category	Group	Function	Number of ORF
	J	translation, ribosomal structure and biogenesis	207
Information storage and processing	Κ	transcription	529
	L	DNA replication, recombination and repair	149
	D	cell division and chromosome partitioning	39
	О	posttranslational modification, protein turnover, chaperones	152
Colludor and control	М	cell envelope, biogenesis, outer membrane	240
Centuar processes	Ν	cell motility and secretion	8
	Р	inorganic ion transport and metabolism	181
	Т	signal transduction mechanisms	367
	С	energy production and conversion	259
	G	carbohydrate transport and metabolism	368
	Е	amino acid transport and metabolism	407
Cell metabolism	F	nucleoside transport and metabolism	120
	Н	coenzyme metabolism	205
	Ι	lipid metabolism	249
	Q	secondary metabolites biosynthesis, transport and catabolism	140
Othoma	R	general function prediction only	669
Others	S	function unknown	415
Total			4,704

Table 3. Gene list for aerial mycelium and spore formation in K. cheerisanensis KCTC 2395 and K. setae KM-6054

Function	Gene	K. cheerisanensis	<i>K. setae</i> KM-6054
	bldA	KCH_t00590	KSE_t0069
	bldB	KCH_16500	KSE_16220
	bldC	KCH_41250	KSE_41620
	bldD	KCH_13680	KSE_13950
A suisl manalism	bldG	KCH_36150	KSE_35840
Aeriai mycenum	bldH	KCH_28450	KSE_26930
	bldKA-KE	KCH_47870~KCH_47920	KSE_48250~KSE_48290
	bldM	KCH_32550	KSE_31060
	bldN	KCH_34450	KSE_33690
	amfC	KCH_43270	KSE_43740
	whiA	KCH_55700	KSE_55390
	whiB	KCH_30810	KSE_29410
	whiD	KCH_32560	KSE_31070
	whiE	KCH_73470~KCH_73550	KSE_72410~KSE_72480
Smone formation	whiG	KCH_52450	KSE_52540
Spore formation	whiH	KCH_54200	KSE_54050
	whiI	KCH_55410	KSE_55090
	sigF	KCH_37950	KSE_37310
	sigN	KCH_37960	KSE_37320
	crgA	KCH_39800	KSE_39340

The genus Kitasatospora and Streptomyces are chemotaxonomically different in the cell wall composition. The peptidoglycan of *Streptomyces* contains only LL-DAP, whereas Kitasatospora has meso-DAP as well as LL-DAP in its cell wall (Omura et al., 1981; Takahashi et al., 1983). Two murE genes in draft genome of K. cheerisanensis were identified, as in most of Streptomyces genomes (Table 4). Differently from K. setae containing three dapF gene for diaminopimelate epimerase producing meso-DAP, one dapF gene (KCH_ 53750) was present in draft genome of K. cheerisanensis, similarly to the most genomes of Streptomyces species (Table 4). Ichikawa et al. (2010) previously suggested that the presence of meso-DAP in whole cell lysate is probably attributed to the third DapF protein (KSE_32630) which showed the close relatedness with DapF proteins of bacteria incorporating meso-DAP in cell wall. However this proposal could be more complicated due to the draft genome of K. cheerisanensis that includes two murE genes and one dapF, as likely

Table 4. Comparison of genes invo	lved in the incorporation of diamino-
pimelic acid into peptidoglycan of k	K. cheerisanensis KCTC 2395 and other
actinomycetes	

Cturin.	mur	Jet Towns		
Strain	dcw locus	additional	- <i>aapr</i> gene	
K. cheerisanensis KCTC 2395	KCH_21600	KCH_08750	KCH_53750	
K. setae NBRC 14216	KSE_21280	KSE_08470	KSE_32600, KSE_32630, KSE_53750	
S. coelicolor A3(2)	SCO_2089	SCO_1212	SCO_5793	
S. avermitilis M-4605	SAV_6117	SAV_7125	SAV_2473, SAV_3161	
S. cattleya NRRL 8057	SCAT_1206	SCAT_0326	SCAT_4565	
S. griseus IFO 13350	SGR_5416	SGR_0186	SGR_1727	
S. scabiei 87.22	SCAB-67961	SCAB_78601	SCAB_24751	
S. erythraea NRRL 23338	SACE_5856	SACE_3574	SACE_1753	

as *Streptomyces* species. It might be far-fetched in the point that *meso*-DAP is a biosynthetic intermediate for L-lysine pathway. Further we found another *murE* gene in *K. setae* genome sequence (KSE_08470) showing high similarity with the additional *murE* gene of other actinomycetes.

The main *murE* gene (KCH_21600) coding for UDP-*N*-acetylmuramyl-L-alanyl-D-glutamate: DAP ligase was located in a long conserved *dcw* (division of cell wall) locus. The second *murE* gene (KCH_08750) was neighboring the genes for glutamate/glutamine metabolism. Even though the main *murE* genes in a *dcw* locus encode polypeptides larger than 500 amino acids, much shorter proteins possessing around 400 amino acids were produced from the second *murE* genes. Further no significant similarity (about 10–15%) was found between the main MurEs and the second MurEs.

Based on the crystal structures of MurE proteins (Smith, 2006; Basavannacharya *et al.*, 2010; Shanmugam and Natarajan, 2012; McGroty *et al.*, 2013), it has been revealed that those are composed of 3 domains; N-terminal (A) domain binding with UDP portion, the middle (B) domain binding with peptides of UDP-*N*-acetylmuramyl-L-alanyl-D-glutamate (UAG) as well as ATP, and C-terminal (C) domain binding with DAP. Since the additional MurE proteins of actinomycetes did not contain A domain and further C domain is not complete, it is uncertain whether these MurEs exhibit the biological function in peptidoglycan biosynthesis or not.

Assuming that the second MurEs of actinomycetes are nonfunctional, the selection of diamino acids (LL-DAP, *meso*-DAP or L-Lys) as the third amino acid in peptidoglycan biosynthesis could be made by the main MurE proteins. It has been already known that the genus *Streptomyces* contains LL-DAP, the genus *Saccharopolyspora* and the genus *Mycobacterium* have *meso*-DAP, and the genus *Kitasatospora* possesses both LL-form and *meso*-form as their cell wall

Fig. 2. Phylogenic comparison of actinomycetes MurE proteins (UDP-N-acetylmuramyl-1-alanyl-D-glutamate: DAP ligase; UMT synthase) by average distance tree. Prefixes of actinomycetes MurE proteins are as follows: SACE, Saccharopolyspora erythraea NRRL 2338; NC, Mycobacterium tuberculosis H37Rv; KCH, Kitasatospora cheerisanensis KCTC 2395; KSE, Kitasatospora setae KM-6054; SGR, Streptomyces griseus subsp. griseus NBRC 13350; SCLAV, Streptomyces clavuligerus ATCC 27064, SAV, Streptomyces avermitilis MA-4680; SCO, Streptomyces coelicolor A3(2); SCAB, Streptomyces scabiei 87.22; SSHG, Streptomyces albus J1074; SCAT, Streptomyces cattleya NRRL 8057. The number in parenthesis is the number of amino acids in MurE proteins.

component. The phylogenic comparison of the main MurEs clearly demonstrates this difference of cell wall composition. Deducing from the cell wall composition, the MurE of *Saccharopolyspora erythraea* (SACE_5856) and *M. tuberculosis* (NC_000962.3) can incorporate *meso*-DAP, but *Streptomyces* MurEs (SCO2089, SAV_6117, SCAT_1206, SGR_5416, and SCAB_67961) might ligate LL-DAP on UAG. In the average distance tree, MurE proteins of *Kitasatospora* (KCH_21600 and KSE_21280) are placed in a separate clade between MurE proteins of *Streptomyces* species and those of *Saccharopolyspora erythraea* or *Mycobacterium tuberculosis* (Fig. 2). It implies that *Kitasatospora* MurEs might exhibit the substrate specificity both on LL-DAP and *meso*-DAP as the third amino acid during peptidoglycan biosynthesis. However, the further studies should be done in order to clarify this suggestion.

Several gene clusters for the biosynthesis of secondary metabolites were found in the draft genome including type I polyketide synthase (PKS) gene clusters (KCH_04080~KCH_ 04120, and KCH_45030~KCH_45040), type II PKS gene cluster (KCH_73510~KCH_73550), nonribosomal peptide synthetase (NRPS) gene clusters (KCH_06280~KCH_06390, KCH_45400~KCH_45410, KCH_61460~KCH_61470, and KCH_70790~KCH_70800), and PKS/NRPS hybrid gene clusters (KCH_67350~KCH_67370, and KCH_74020~KCH_74040). The number of gene clusters for the secondary metabolites was less than *K. setae* (Ichikawa *et al.*, 2010).

Among them, the gene cluster for bafilomycin biosynthesis was assigned on the first type I PKS gene cluster (KCH_04080~KCH_04120). This gene cluster in *K. cheerisanensis* is located at left subtelomeric region, differently from the genome of *K. setae* having it at right subtelomeric region (Fig. 1). Further the architecture of this gene cluster is inverted in this draft genome, which implies that the bafilomycin biosynthetic gene cluster could be horizontally transferred to both strains.

The organization of bafilomycin biosynthetic gene cluster was the same as that of *S. lohii* and *S. griseus* (Hwang *et al.*, 2013; Zhang *et al.*, 2013). The 57.6 kb of PKS region con-

Gene accession number	Number of amino acid	Deduced function	The closest protein (GenBank number)	Gene strain	Homology (%)
KCH_03990	359	hypothetical protein	WP_014140404.1	K. setae KM-6054	93
KCH_04000	320	malonyl transferase	EYU71412.1	Streptomyces sp. PCS3-D2	91
KCH_04010	213	hypothetical protein	WP_018568166.1	Streptomyces sp. PsTaAH-124	84
KCH_04020	639	AfsR family transcriptional regulator	WP_018487292.1	Streptomyces sp. CcalMP-8W	83
KCH_04030	220	SAM-dependent methyltransferase	WP_018568169.1	Streptomyces sp. PsTaAH-124	93
KCH_04040	366	FkbH	WP_018961924.1	Streptomyces sp. CNB091	92
KCH_04050	371	acyl-CoA dehydrogenases	WP_019761696.1	Streptomyces sp. Wigar10	91
KCH_04060	89	methoxymalonate biosynthesis protein	WP_014140396.1	K. setae KM-6054	88
KCH_04070	289	3-hydroxyacyl-CoA dehydrogenase	WP_014140395.1	K. setae KM-6054	91
KCH_04080	2097	modular polyketide synthase V	KDQ71156.1	Streptomyces sp. NTK 937	86
KCH_04090	3392	modular polyketide synthase IV	KDQ71155.1	Streptomyces sp. NTK 937	87
KCH_04100	3915	modular polyketide synthase III	KDQ71154.1	Streptomyces sp. NTK 937	88
KCH_04110	4988	modular polyketidesynthase II	ADC79617.1	S. lohii ATCC BAA-1276	86
KCH_04120	4759	modular polyketide synthase I	KDQ71153.1	Streptomyces sp. NTK 937	85
KCH_04130	410	5-aminolevulinate synthase	WP_014140389.1	K. setae KM-6054	92
KCH_04140	514	amide synthetase	ADC79614.1	S. lohii ATCC BAA-1276	89
KCH_04150	518	AMP-dependent synthetase	WP_014140387.1	K. setae KM-6054	91

Fig. 3. The bafilomycin biosynthetic gene cluster found in the genome draft of *K. cheerisanensis* KCTC 2395. (A) In the gene cluster having 71,307 bp in length, 17 ORFs including 5 modular polyketide synthase (PKS) genes were found, as described in Table 5. The gene accession numbers under the prefix "KCH_" are described near the arrow representing the gene direction. (B) Domain analysis of 5 modular PKS genes by MAPSI (Management and Analysis for Polyketide Synthase type I) tool (Tae *et al.*, 2009).

sisted of 12 PKS modules in 5 different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone (Fig. 3). All the modules showed high similarities with typical type I PKS genes. In downstream of PKS region, the genes for methoxymalonate biosynthesis were located, among which a gene for FkbH-like protein was assumed to play an important role in the production of methoxymalonyl-CoA from glyceryl-CoA. Further the genes encoding flavensomycinyl-ACP biosynthesis for the post-PKS tailoring were also found in the upstream of PKS region (Table 5).

The resistance genes to β -lactam antibiotics including AmpC β -lactamase (KCH_10470; KCH_10480) and metallo- β -lactamase (KCH_19220; KCH_36670) were identified. The other putative resistance genes to aminoglycoside antibiotics (KCH_00980; KCH_00990) and to chloramphenicol (KCH_72240; KCH_73860) were also found in this draft genome.

This work was kindly supported by Research Grant from Yeungnam University.

References

- Barbe, V., Bouzon, M., Mangenot, S., Badet, B., Poulain, J., Segurens, B., Vallenet, D., Marlière, P., and Weissenbach, J. 2011. Complete genome sequence of *Streptomyces cattleya* NRRL 8057, a producer of antibiotics and fluorometabolites. *J. Bacteriol.* 193, 5055–5056.
- Basavannacharya, C., Robertson, G., Munshi, T., Keep, N.H., and Bhakta, S. 2010. ATP-dependent MurE ligase in *Mycobacterium tuberculosis*: biochemical and structural characterisation. *Tuberculosis* 90, 16–24.
- Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser,

H., Harper, D., *et al.* 2002. Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2). *Nature* **417**, 141–147.

- Bignell, D.R., Seipke, R.F., Huguet-Tapia, J.C., Chambers, A.H., Parry, R.J., and Loria, R. 2010. *Streptomyces scabies* 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. *Mol. Plant Microbe Interact.* 23, 161–175.
- Chater, K.F. and Chandra, G. 2006. The evolution of development in *Streptomyces* analysed by genome comparisons. *FEMS Microbiol. Rev.* 30, 651–672.
- Chung, Y.R., Sung, K.C., Mo, H.K., Son, D.Y., Nam, J.S., Chun, J., and Bae, K.S. 1999. *Kitasatospora cheerisanensis* sp. nov., a new species of the genus *Kitasatospora* that produces an antifungal agent. *Int. J. Syst. Bacteriol.* **49**, 753–758.
- Claessen, D., de Jong, W., Dijkhuizen, L., and Wösten, H.A.B. 2006. Regulation of *Streptomyces* development: reach for the sky! *Trends Microbiol.* 14, 313–319.
- Delcher, A.L., Salzberg, S.L., and Phillippy, A.M. 2003. Using MUMmer to identify similar regions in large sequence sets. *Curr. Protoc. Bioinformatics* Chap.10. doi: 10.1002/0471250953. bi1003s00.
- den Hengst, C.D., Tran, N.T., Bibb, M.J., Chandra, G., Leskiw, B.K., and Buttner, M.J. 2010. Genes essential for morphological development and antibiotic production in *Streptomyces coelicolor* are targets of BldD during vegetative growth. *Mol. Microbiol.* 78, 361–379.
- Disz, T., Akhter, S., Cuevas, D., Olson, R., Overbeek, R., Vonstein, V., Stevens, R., and Edwards, R.A. 2010. Accessing the SEED genome databases via Web services API: tools for programmers. *BMC Bioinformatics* 11, 319.
- Hwang, J.Y., Kim, H.S., Kim, S.H., Oh, H.R., and Nam, D.H. 2013. Organization and characterization of a biosynthetic gene cluster for bafilomycin from *Streptomyces griseus* DSM 2608. *AMB Express* **3**, 24.
- Hwang, J.Y., Kim, S.H., Oh, H.R., Cho, Y.J., Chun, J., Chung, Y.R., and Nam, D.H. 2014. Draft genome sequence of *Kitasatospora* cheerisanensis KCTC 2395 producing plecomacrolide against

phytopathogenic fungi. *Genome Announc.* 2, e00604-14.

- Ichikawa, N., Oguchi, A., Ikeda, H., Ishikawa, J., Kitani, S., Watanabe, Y., Nakamura, S., Katano, Y., Kishi, E., Sasagawa, M., et al. 2010. Genome sequence of *Kitasatospora setae* NBRC 14216: An evolutionary snapshot of the family *Streptomycetaceae*. DNA Res. 17, 393–406.
- McGroty, S.E., Pattaniyil, D.T., Patin, D., Blanot, D., Ravichandran, A.C., Suzuki, H., Dobson, R.C., Savka, M.A., and Hudson, A.O. 2013. Biochemical characterization of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase (MurE) from *Verrucomicrobium spinosum* DSM 4136(T.). *PLoS One* **8**, e66458.
- Moon, S.S., Hwang, W.H., Chung, Y.R., and Shin, J. 2003. New cytotoxic bafilomycin C1-amide produced by *Kitasatospora cheerisanensis. J. Antibiot.* **56**, 856–861.
- Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hattori, M., and Horinouchi, S. 2008. Genome sequence of the streptomycin-producing microorganism *Streptomyces griseus* IFO 13350. J. Bacteriol. 190, 4050–4060.
- Oliynyk, M., Samborskyy, M., Lester, J.B., Mironenko, T., Scott, N., Dickens, S., Haydock, S.F., and Leadlay, P.F. 2007. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat. Biotechnol. 25, 447–453.
- Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., et al. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98, 12215–12220.

Omura, S., Iwai, Y., Takahashi, Y., Kojima, K., Otoguro, K., and

Oiwa, R. 1981. Type of diaminopimelic acid different in aerial and vegetative mycelia of setamycin-producing actinomycete KM-6054. *J. Antibiot.* **34**, 1633–1634.

- Omura, S., Takahashi, Y., Iwai, Y., and Tanaka, H. 1982. Kitasatospora, a new genus of the order Actinomycetales. J. Antibiot. 35, 1013–1019.
- Shanmugam, A. and Natarajan, J. 2012. Comparative modeling of UDP-N-acetylmuramoyl-glycyl-D-glutamate-2, 6-diaminopimelate ligase from *Mycobacterium leprae* and analysis of its binding features through molecular docking studies. *J. Mol. Model.* 18, 115–125.
- Smith, C.A. 2006. Structure, function and dynamics in the mur family of cell wall ligases. J. Mol. Biol. 362, 640–655.
- Tae, H., Sohng, J.K., and Park, K. 2009. Development of an analysis program of type I polyketide synthase gene clusters using homology search and profile hidden Markov model. J. Microbiol. Biotechnol. 19, 140–146.
- Takahashi, Y., Iwai, Y., and Omura, S. 1983. Relationship between cell morphology and the types of diaminopimelic acid in *Kitasatospora setalba. J. Gen. Appl. Microbiol.* **29**, 459–465.
- Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Res.* 28, 33–36.
- Tatusov, R.L., Koonin, E.V., and Lipman, D.J. 1997. A genomic perspective on protein families. *Science* 278, 631–637.
- Zhang, W., Fortman, J.L., Carlson, J.C., Yan, J., Liu, Y., Bai, F., Guan, W., Jia, J., Matainaho, T., Sherman, D.H., *et al.* 2013. Characterization of the bafilomycin biosynthetic gene cluster from *Streptomyces lohii*. *Chembiochem* 14, 301–306.